Is it really cheap to install solar panels
solar power for homes
Having trouble mounting solar panels? Questions and Answers
Solar power is the conversion of renewable energy from sunlight into electricity, either directly using photovoltaics (PV), indirectly using concentrated solar power, or a combination. Concentrated solar power systems use lenses or mirrors and solar tracking systems to focus a large area of sunlight into a small beam. Photovoltaic cells convert light into an electric current using the photovoltaic effect.[1]
Photovoltaics were initially solely used as a source of electricity for small and medium-sized applications, from the calculator powered by a single solar cell to remote homes powered by an off-grid rooftop PV system. Commercial concentrated solar power plants were first developed in the 1980s. Since then, as the cost of solar electricity has fallen, grid-connected solar PV systems have grown more or less exponentially. Millions of installations and gigawatt-scale photovoltaic power stations have been and are being built. Solar PV has rapidly become an inexpensive, low-carbon technology.
The International Energy Agency said in 2021 that under its “Net Zero by 2050” scenario solar power would contribute about 20% of worldwide energy consumption, and solar would be the world’s largest source of electricity.[2] China has the most solar installations. In 2020, solar power generated 3.5% of the world’s electricity, compared to under 3% the previous year.[3] In 2020 the unsubsidised levelised cost of electricity for utility-scale solar power was around $36/MWh,[4] and installation cost about a dollar per DC watt.[5]
Concentrated solar power
A parabolic collector concentrates sunlight onto a tube in its focal point.
Main article: Concentrated solar power
Concentrated solar power (CSP), also called “concentrated solar thermal”, uses lenses or mirrors and tracking systems to concentrate sunlight, then use the resulting heat to generate electricity from conventional steam-driven turbines.[16]
A wide range of concentrating technologies exists: among the best known are the parabolic trough, the compact linear Fresnel reflector, the dish Stirling and the solar power tower. Various techniques are used to track the sun and focus light. In all of these systems a working fluid is heated by the concentrated sunlight, and is then used for power generation or energy storage.[17] Thermal storage efficiently allows up to 24-hour electricity generation.[18]
A parabolic trough consists of a linear parabolic reflector that concentrates light onto a receiver positioned along the reflector’s focal line. The receiver is a tube positioned along the focal points of the linear parabolic mirror and is filled with a working fluid. The reflector is made to follow the sun during daylight hours by tracking along a single axis. Parabolic trough systems provide the best land-use factor of any solar technology.[19] The Solar Energy Generating Systems plants in California and Acciona’s Nevada Solar One near Boulder City, Nevada are representatives of this technology.[20][21]
Compact Linear Fresnel Reflectors are CSP-plants which use many thin mirror strips instead of parabolic mirrors to concentrate sunlight onto two tubes with working fluid. This has the advantage that flat mirrors can be used which are much cheaper than parabolic mirrors, and that more reflectors can be placed in the same amount of space, allowing more of the available sunlight to be used. Concentrating linear fresnel reflectors can be used in either large or more compact plants.[22][23]
The Stirling solar dish combines a parabolic concentrating dish with a Stirling engine which normally drives an electric generator. The advantages of Stirling solar over photovoltaic cells are higher efficiency of converting sunlight into electricity and longer lifetime. Parabolic dish systems give the highest efficiency among CSP technologies.[24] The 50 kW Big Dish in Canberra, Australia is an example of this technology.[20]
A solar power tower uses an array of tracking reflectors (heliostats) to concentrate light on a central receiver atop a tower. Power towers can achieve higher (thermal-to-electricity conversion) efficiency than linear tracking CSP schemes and better energy storage capability than dish stirling technologies.[20] The PS10 Solar Power Plant and PS20 solar power plant are examples of this technology.
#madhuraeco #solarcareintternational #solarpower